

Home

python-quiz

[image: Computer Based Problem Solving]
Welcome to our website read the docs. This will explain what we did each day and how our website comes together. As a source, I would recommend you check out this website https://aws-serverless-web-application.readthedocs.io/en/latest/index.html

January 06

What I Did Today:

Today I created a Github repo and a Cloud9 instance then connected the root of Cloud9 to the repo.
Then, I created a index.html file in the root of Cloud9 and updated it to my repo.
Finally, I created an Amplify instance and connected it to the Github repo.

January 07

What I Did Today:

Today I created a role in IAM for Lamda to acess DynamoDB.
I then created a Lambda function so it can run in the background while our website is up and running and maintain it.

January 08

What I Did Today:

Today we created a table in dynamoDB for our website, holding the information of all of our users.
In our Lamda functuion, we introduced a pyhton library called Boto3 and it allows us to acess and AWS service using Python code.

January 09

What I Did Today:

Today we set up the API gateway for our website.

January 10

What I Did Today:

Today we worked on handling eroors in our lamda function in case the user does not put in the right parameters.

January 13

What I Did Today:

Today we started coding on cloud 9 and made a button that says clicl me appear as well as with the words “please wait…”
We also set up Cognitio where all of our user info is stored, and all their information when they sign up is held, in order to do that, we created a cognito user pool.

January 14

What I Did Today:

Today we wrote code to be able to sign in of our website and sign out in html and javascript. We made sure to download the right libraries and write the necassary code to achieve this.

January 15

What I Did Today:

Today we wrote code to be able to view your profile and be able to see your progress, it will display your marks along with your username and email. We coded in html and Java to achieve this.

January 16

What I Did Today:

Today we seperated the javascript code from the html code and made sure to put it into seperate files.

January 17

What I Did Today:

Today we began css and making our website have a nice style and look more appealing to the eye. We added a navigation menu as well as code for our website in html and Javascript for visual effect.

January 20

What I Did Today:

We complete css and have styled our website, we also got some beta testers to test out our website and give us some of their input.

Index

Background

X

Game

X

	Background

	Space Ship

Space Ship

X

Your IDE

One of the great things about CircuitPython hardware is that it just automatically shows up as a USB drive when you attach it to your computer. This means that you can access and save your code using any text editor. This is particularly helpful in schools, where computers are likely to be locked down so students can not load anything. Also students might be using Chromebooks, where only “authorized” Chrome extensions can be loaded.

If you are working on a Chromebook, the easiest way to start coding is to just use the built in Text app [https://chrome.google.com/webstore/detail/text/mmfbcljfglbokpmkimbfghdkjmjhdgbg?hl=en]. As soon as you open or save a file with a *.py extension, it will know it is Python code and automatically start syntax highlighting.

[image: Chromebook Text Editor]
Chromebook Text app

If you are using a non-Chromebook computer, your best beat for an IDE is Mu [https://codewith.mu]. You can get it for Windows, Mac, Raspberry Pi and Linux. It works seamlessly with CircuitPython and the serial console will give you much needed debugging information. You can download Mu here [https://codewith.mu/en/download].

[image: Mu Editor]
Mu IDE

Since with CircuitPython devices you are just writing Python files to a USB drive, you are more than welcome to use any IDE that you are familiar using.

Hello, World!

Yes, you know that first program you should always run when starting a new coding adventure, just to ensure everything is running correctly! Once you have access to your IDE and you have CircuitPython loaded, you should make sure everything is working before you move on. To do this we will do the traditional “Hello, World!” program. By default CircuitPython looks for a file called code.py in the root directory of the PyBadge to start up. You will place the following code in the code.py file:

	1

	print("Hello, World!")

As soon as you save the file onto the PyBadge, the screen should flash and you should see something like:

[image: Hello, World!]
Hello, World! program on PyBadge

Although this code does work just as is, it is always nice to ensure we are following proper coding conventions, including style and comments. Here is a better version of Hello, World! You will notice that I have a call to a main() function. This is common in Python code but not normally seen in CircuitPython. I am including it because by breaking the code into different functions to match different scenes, eventually will be really helpful.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	#!/usr/bin/env python3

Created by : Mr. Coxall
Created on : January 2020
This program prints out Hello, World! onto the PyBadge

def main():
 # this function prints out Hello, World! onto the PyBadge
 print("Hello, World!")

if __name__ == "__main__":
 main()

Congratulations, we are ready to start.

Image Banks

Before we can start coding a video game, we need to have the artwork and other assets. The stage library from CircuitPython we will be using is designed to import an “image bank”. These image banks are 16 sprites staked on top of each other, each with a resolution of 16x16 pixels. This means the resulting image bank is 16x256 pixels in size. Also the image bank must be saved as a 16-color BMP file, with a pallet of 16 colors. To get a sprite image to show up on the screen, we will load an image bank into memory, select the image from the bank we want to use and then tell CircuitPython where we would like it placed on the screen.

[image: Image Bank for Space Aliens]
Image Bank for Space Aliens

For sound, the stage library can play back *.wav files in PCM 16-bit Mono Wave files at 22KHz sample rate. Adafruit has a great learning guide on how to save your sound files to the correct format here [https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files].

If you do not want to get into creating your own assets, other people have already made assets available to use. All the assets for this guide can be found in the GitHub repo here:

	space aliens image bank [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/space_aliens.bmp]

	coin sound [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/coin.wav]

	pew sound [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/pew2.wav]

	boom sound [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/boom.wav]

	crash sound [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/crash.wav]

Please download the assets and place them on the PyBadge, in the root directory. Your previoud “Hello, World!” program should restart and run again each time you load a new file onto the PyBadge, hopefully with no errors once more.

Assets from other people can be found here [https://github.com/MotherTeresaHS/ICS3U-2019-Group0/tree/master/docs/image_bank].

Install CircuitPython

[image: PyBadge UF2]
Clearing the PyBadge and loading the CircuitPython UF2 file

Before doing anything else, you should delete everything already on your PyBadge and install the latest version of CircuitPython onto it. This ensures you have a clean build with all the latest updates and no leftover files floating around. Adafruit has an excellent quick start guide here [https://learn.adafruit.com/adafruit-pybadge/installing-circuitpython] to step you through the process of getting the latest build of CircuitPython onto your PyBadge. Adafruit also has a more detailed comprehensive version of all the steps with complete explanations here [https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython] you can use, if this is your first time loading CircuitPython onto your PyBadge.

Just a reminder, if you are having any problems loading CircuitPython onto your PyBadge, ensure that you are using a USB cable that not only provides power, but also provides a data link. Many USB cables you buy are only for charging, not transfering data as well. Once the CircuitPython is all loaded, come on back to continue the tutorial.

Game Over Scene

T

Menu System

X

	Start Scene

	Splash Scene

	Game Over Scene

Splash Scene

T

Start Scene

X

Sprites

Problems have been around for as long as people have been around. The process of solving a problem is not something new. Using a computer to aid in solving a problem is new. Modern electronic computers have only been around since the Second World War (1939-1945), which might seem like a long time ago to you but in the history of the human race it is a very short time. The purpose of this book is to help you learn to structure your problem solving method, so that you can consistently develop a verifiable solution that will solve a problem and in the process, use the computer to help you more easily and quickly solve that problem.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/space_aliens.png
“®d
P EY
44

_static/comment-bright.png

_images/loading_circuitpython.gif
oo e - owenares T
9 sere boomuay Yesterday a8 W
O boot outxt Yesterday 84 bytes
gt codepy Vesterday 16K8 Py
- coinvav Vesterday KB W
PR . constants.py Yesterday 1KB Py
Mecualy crashwav. Yesterday 140KB W
[Documents » mlib Yesterday - Fo
© Dourions mtgame_studio b, Yesterday 2k8 Wi
pewzay Yesterday 20K8 W
- . README.md Yesterday 60 bytes M
@ fEbud oo 1 space_aliens.bmp Yesterday 2KB Wi
8 crcursy @

@ remats D
® w2ie100

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Home

_images/circuitpython_mu-front-page.png
[

‘Code with Mu: a simple Python editor for beginner programmers.

GJO[610] 0[QO[CIO[0[C[0]0]O)

1 print(Hello from Mui)

oo ety
Hello from Mt
o |

P — o G
2018 o e, ksl vt e s, TR T e o G Correr by 4 it L

_images/hello_world.png
h

i,l:ode done running. Waiti
ng for reload.

soft reboot
code.py output/
Hello, World!

Code done running. Waiti
ng for reload.

mp

_static/up.png

_images/chrome_text_ide.png

_static/yes.png

